Quantitative Analysis
Data Analysis Consultants Zimbabwe was founded by statisticians, and one of our core specialties remains to provide individuals and organisations help with their quantitative analysis and results presentation. As we often say at Data Analysis Consultants Zimbabwe, nothing is too complex, and so whether you’re completing a straightforward correlational study using a well-known survey instrument or engaged in higher-level structural equation modeling to examine latent variables, we’re uniquely qualified to perform your statistical analysis and provide you with a compelling and comprehensive results discussion.
As with qualitative research, studies with quantitative methodologies have a number of possible designs, each of which must be articulated effectively in your research questions (and hypotheses), variables, and testing plan in order to ensure robust results. At Data Analysis Consultants Zimbabwe, we can assist you with developing a testing plan and performing your full analysis for each of the below research designs–and we can also help you determine if additional testing is needed to guarantee compelling findings and actionable insights. Our data analysis assistance/help service is extended to projects of any scale from the simplest analysis to complex projects. Our expert statisticians are proficient with virtually every statistical method and test across a broad range of statistical software packages, including SPSS, SAS, STATA, R, LISREL/AMOS/EQS, and many others.
Types of quantitative analysis
- Descriptive: Descriptive analysis is, on its own, not typically considered robust enough for advanced research, because no relationships are being examined or inferred. That being said, it is important in terms of providing a basic summary of your sample and dataset. This is done through measuring, for example, either frequency and percentage (for nominal variables) or mean median, and standard deviation (for interval variables). Our statisticians can assist you with this initial statistical analysis prior to orient your readers before completing the more rigorous analysis necessary to ensure your results are ready for dissemination.
- Correlational: While correlational research is also relatively simple, unlike descriptive studies, correlational studies do have both independent and dependent variables. That being said, some of the more critical methodologists will often press for a more sophisticated research design and analysis. For researchers seeking statistical consulting help completing their correlational testing, we can perform all necessary analysis using the appropriate correlation (Pearson, Kendall, Spearman, or Point-Biserial).
- Causal-comparative: While the causal-comparative design is similar to a correlational design, it goes beyond simply identifying associations between variables. Researchers who select a causal-comparative design are interested in more directly comparing groups, to determine whether an independent variable affects the dependent variable (or outcome) for these groups in terms of effects, causes, and consequences. While causal-comparative studies cannot fully prove causation, they can point to the need for a more deliberate (rather than ex post facto) analysis. Our statisticians can perform all necessary inferential analysis for your causal-comparative study, including the chi-square test, paired-samples or independent t-tests, and ANOVA or ANCOVA, as appropriate. We can also address any potential issues of internal and external validity that may arise from completing statistical analysis for pre-existing conditions.
- Quasi-experimental: Studies with this type of design involve actually conducting an experiment and analyzing the collected data (rather than working with a pre-existing set of circumstances, as in the above designs). This design remains quasi-experimental, however, because of the lack of random assignment; the groups themselves are predetermined. Because of the presence of an experimental and control group, however, the design and thus the analysis is more robust. Here, too, inferential statistics are appropriate, as well as regression and/or multiple regression analysis.
- Experimental: For truly experimental designs, random assignment is used to determine the experimental and control groups, in order to prevent any other possible factors impacting any differences between the intervention and/or variables being tested. Again, inferential statistics are required to determine the impact of the independent variable or variables on the outcome. Our statistical analysis team has extensive experience with both quasi-experimental and experimental studies and can complete a full analysis often in as little as 2-3 days.
- Models: Our team is experienced in working with various models in different subject areas. Furthermore, they are able to acquaint themselves with new models which are presented and implement them with accuracy. New techniques and models are always coming up. Our team has a development spirit and will always develop the skills necessary to complete your task.
No limits to our competencies
Our statisticians can also assist with more complex quantitative analysis, such as structural equation modeling (SEM) and path analysis, as needed. After performing your analysis, we then send you the outputs of the completed statistical analysis (along with any figures and tables), all in your required format, along with a detailed summary of the findings.
From here, we work with you extensively to address any revisions you’d like, explain to you how to interpret the results, provide ample instruction on the methods used (and why) and what the results mean, and allow unlimited statistical consulting support to ensure that you completely understand the results of the analysis and can discuss (and defend!) them when you present.
Why you should use data analysis in business